Hamilton surfaces for the complete even symmetric bipartite graph

نویسندگان

  • Nora Hartsfield
  • Brad Jackson
  • Gerhard Ringel
چکیده

A cycle in a graph G is called a hamilton cycle if it contains every vertex of G. A l-factor of a graph G is a subgraph H of G with the same vertex set as G, such that each vertex of H has degree one. Ringel [S] has generalized the idea of a hamilton cycle to two dimensions. He showed that if n is odd the set of squares in the n-dimensional cube Q,, can be partitioned into subsets such that each subset forms a connected polyhedron on an orientable surface of genus (n 4)2n-3 + 1. He called these subsets hamilton surfaces. These polyhedra are in fact genus embeddings of the graph consisting of the vertices and edges of Qm. A hamilton surface for a graph G is an embedding of G into a surface with the property that all faces of the embedding are r-gons for some fixed r 3 3. A hamilton surface decomposition of G is a collection of hamilton surfaces such that every r-cycle in G is the boundary of a face in precisely one surface. In this paper, we shall consider hamilton surfaces for K2n,2n and r = 4. These surfaces are genus embeddings of Kti,zn. For K 2n,2n the genus embedding consists of 2n2 squares and the orientable genus is p = (n 1)2. Let us return for a moment to one dimension. The following theorem is well known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Hamilton Cycle Decompositions of Complete Graphs Minus a 1-Factor

Let n ≥ 2 be an integer. The complete graph Kn with a 1-factor F removed has a decomposition into Hamilton cycles if and only if n is even. We show that Kn − F has a decomposition into Hamilton cycles which are symmetric with respect to the 1-factor F if and only if n ≡ 2, 4 mod 8. We also show that the complete bipartite graph Kn,n has a symmetric Hamilton cycle decomposition if and only if n ...

متن کامل

Remainder Cordial Labeling of Graphs

In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...

متن کامل

On the Hamiltonian Laceability of Honeycomb Toroidal Graphs

The Honeycomb toroidal graph is a highly symmetric, vertex-transitive, bipartite graph which has been investigated for certain properties including pan-cyclicity and Hamilton laceability. The main focus of this project was to construct generalised methods for finding Hamilton paths and thus provide a proof of Hamilton laceability for this graph. The resulting proof was successful for a subset o...

متن کامل

Bipartite Symmetric Digraph

P2p -factorization of a complete bipartite graph for p, an integer was studied by Wang [1]. Further, Beiling [2] extended the work of Wang[1], and studied the P2k -factorization of complete bipartite multigraphs. For even value of k in Pk -factorization the spectrum problem is completely solved [1, 2, 3]. However for odd value of k i.e. P3 , P5 and P7 , the path factorization have been studied ...

متن کامل

Mixed cycle-E-super magic decomposition of complete bipartite graphs

An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) +  ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 78  شماره 

صفحات  -

تاریخ انتشار 1989